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SUMMARY 

The advantages associated with the use of self-adaptive methods for the solution of problems which require 
the prediction of a frontal position in time are well known. In this paper a self-adaptive finite element 
solution for the non-linear unsaturated flow equation is developed using hierarchic p-version enrichment of 
the interpolating space. Additional computational advantages are demonstrated for an iteration scheme in 
which iterations after enrichment are performed only over a subdomain. Numerical solutions are presented 
for a one-dimensional infiltration scenario. 
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INTRODUCTION AND BACKGROUND 

Many problems of environmental significance require the prediction of the displacement of a 
front with time. When solving such problems numerically, methods which provide greater 
resolution at the front where the state variable is changing most rapidly are computationally 
desirable. These models are commonly described as 'self-adaptive' in the literature. By enriching 
the approximation, based on feedback from previous solutions, self-adaptive methods can 
produce improved solutions, both in terms of efficiency and reliability.' 

In this paper a self-adaptive finite element method is presented for the numerical solution of the 
non-linear Fokker-Planck equation for the transient isothermal flow of water into a non-swelling 
unsaturated soil2 The solution is obtained in one-dimension, with initial and boundary condi- 
tions and functional forms for the non-linear terms after Haverkamp et aL3 

In the presented application the saturation front is moving vertically with time, making a self- 
adaptive method advantageous computationally by allowing greater resolution at the front for a 
given number of degrees of freedom. Many numerical models have been developed for the 
solution of problems in unsaturated flow. A number are reviewed by van G e n ~ c h t e n . ~  These 
models include solutions based on a dynamic simulation language,' finite  difference^^'^-^ 
(including a two-phase numerical model which allows the air pressure to vary"), finite element 
 approximation^"-'^ and a multigrid finite difference s ~ l u t i o n ' ~  for the steady state problem. 
None of the numerical models mentioned above is self-adaptive. An adaptive model developed for 
unsaturated flow using a Eulerian-Langrangian finite element approach is discussed by Sorek 
and Brae~ter , '~  although no numerical results are presented. 
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The self-adaptive algorithm described herein is developed using hierarchic basis functions. In 
this algorithm the local accuracy of the solution is improved by increasing the order of the basis 
functions at the front. Such techniques are commonly known as p-version finite element methods. 
The model presented in this paper is an extension and modification of preliminary work 
presented by the first author. l 6  Self-adaptive hierarchic p-version finite element methods have 
been shown to possess several advantages over other self-adaptive finite element methods of the 
so-called ‘h’ or ‘r’ variety.l7-I9 These advantages are discussed in greater detail later in this paper. 
The discussion includes the results of numerical simulations which support the selection of 
hierarchic p-version enrichment for this application. h-Version methods refine the solution by 
introducing additional nodes to an interpolation space of fixed order, while r-version methods 
refine the solution by redistributing a fixed number of nodes in space. Both methods have been 
widely ~ s e d . ~ ’ - ~ ’  Hierarchic basis functions have the property that the introduction of additional 
degrees of freedom simply adds additional terms to the approximating functions while retaining 
the terms computed previously. This results in computational efficiency owing to the retention of 
previously computed terms and to the suitability of the final matrix structure for the use of 
various efficient solution schemes.26-28 The hierarchic p-version finite element method has been 
used extensively to solve linear fracture mechanics and elasticity  problem^.^'-^' Applications to 
linear elliptic and hyperbolic problems,32 the generalized linear eigenvalue problem,33 heat 
conduction2’ and flow problems34 have also been reported. While the effectiveness of the 
hierarchic finite element approach has been extensively documented for linear problems, little 
work has been done to examine its utility for non-linear problems. Babuska and Rheinbolt 
investigated some non-linear structural problems35 and found that, for a given number of degrees 
of freedom, higher-order elements performed better than lower-order elements. This paper 
represents a relatively unique application of the self-adaptive p-version finite element method to a 
non-linear transient problem of environmental significance. 

MATHEMATICAL MODELLING 

Gouerning equation 

given by 
The governing equation for one-dimensional flow of water in an unsaturated vertical column is 

C ~ = ~ [ K k . , ( ~ - -  a t  az l)], 

where C = n ds/dh is the soil moisture capacity, n is the matrix porosity, h is the suction head, s is 
the water saturation, z is the vertical co-ordinate (directed downwards), t is the time co-ordinate, 
K is the saturated hydraulic conductivity and k,, is the relative permeability of the water phase. 
This equation neglects the effects of matrix and fluid compressibility and assumes that the air 
phase is static. Since the soil moisture capacity C and the relative permeability k,, are functions of 
h, equation (1) is a non-linear partial differential equation in the suction head h. 

Application of the Galerkin method 

equation. First, the continuous function h is replaced by the trial function i: 
In order to solve equation (1) numerically, Galerkin’s method is applied to the governing 
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where wj are members of a family of hierarchic basis functions which will be discussed in greater 
detail in a following section, hj(t) are undetermined nodal coefficients and N is the number of 
nodes. Since k,, and ds/dh are functions of h, they can also be expanded in terms of the basis 
functions wk(z) as 

The two parameters K and n are assumed piecewise constant over each element. After substi- 
tuting equations (2), (3) and (4) into the governing equation (l), Galerkin's method of weighted 
residuals is employed. Application of Green's theorem to the gradient term yields a matrix 
equation of the form 

where the representative matrix and vector elements are given by 

i f 1  e + l  dw. dwi 
A i j =  c 1 Kekrwkwk2-dQr 

e = i  k = e  ]fie dz dz 

where i , j ,  kE[l, N ] ;  eE[1, N - 13. In equations (6a-c) the global domain has been subdivided 
into elements Qe. re is the element boundary. Now a backward difference formula is used to 
approximate the time derivative in equation (5 ) ,  resulting in the following matrix equation: 

(7) 

The superscripts in equation (7) refer to the time level of evaluation of each term. Equation (7) is 
fully implicit and can be rearranged to yield 

[A]'+A'{hf'+A' + [B]'+A'({h)'fA' - {h)')/At = { f)*+*'. 

[MI'+ At {h]'+ At = {r)f +A' ,  (8) 
where 

[MI' + = [A]'+*' + [B]*+At/At, 

[r]'+A'= [ f]t+At + [B]'+Af {h}'/At. 

Selection of basis functions 

The basis functions were selected to be members of a family of Co-continuity hierarchic 
Lagrangian basis functions.36 The work presented herein employs only the linear and quadratic 
members of the hierarchic basis function set ( p  6 2). The linear functions are the familiar chapeau 
functions which can be written in local co-ordinates - 1 6 5 6 1 as 

0 - l  = 0 5 ( 1 -  <) ( 104 
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The quadratic basis function is parabolic with a zero value at the element nodes and a second 
derivative of one at  the element midpoint: 

By using the three basis functions, the trial function h  ̂ can be written for a given element as 

o0= 0.5(t2 - 1). ( 104 

(1  1) &z, t )  = h-  ( t )w-  + h ,  (t)ou + hi(ffoo. 

In equation (1 1) hg is the second derivative of h with respect to the local spatial co-ordinate 
evaluated at the element midpoint. Thus the three degrees of freedom for a given quadratic 
element using these basis functions are the two nodal variables h - ,  and h ,  and the so-called 
'nodeless' variable h g  . 

This particular choice of basis functions possesses an important property. The quadratic trial 
function is formed by adding the product of h'd and the quadratic basis function to the linear trial 
function. If the global finite element matrix is formed using linear basis functions, selective 
enrichment of the solution is achieved by simply adding to the global matrix appropriate rows 
and columns containing the new terms resulting from the addition of quadratic terms to the trial 
function. Therefore previously formed matrices using lower-order basis functions are imbedded in 
matrices formed with higher-order basis functions. Thus the computational effort spent in 
forming the original global matrix with linear basis functions is retained. In addition, the initial 
solution for h, obtained from iterations over the matrix equation using entirely linear basis 
functions, can serve directly as a first estimate for iterations over the enriched mesh without 
interpolation. 

Matrix structure 

If the nodeless variables are ordered so that they follow all the nodal values of h, the matrix 
equation (8) can be rewritten after enrichment with quadratic basis functions as 

In equation(l2) the matrix M I ,  is a tridiagonal matrix composed of the same terms as the 
equivalent Galerkin formulation using only linear basis functions. To formulate M , ,  and M, 
the corresponding matrices A and B need to be examined. In the following development the non- 
linear coefficients ds/dh and k,, are expanded across an element only in terms of 0 - I  and 0'. 
This was done to avoid reformulation of MI after enrichment and to maintain the linearity of 
equation (16a). Since wo is zero at the element boundaries, there is no connectivity between 
elements in M , and M, , . Therefore M , will have only diagonal and subdiagonal terms and 
M,, will have only diagonal and superdiagonal terms. Typical forms for the diagonal and off- 
diagonal terms of A and B in M I ,  are given by 

( 1  3a) 
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In equations (13b, d) integration is over element i - 1, while in equations (13a, c) integration is 
over element i. For M,, , 

d o - '  d o o  
k = f l  ne dz dz 

d o '  d o o  
k = + l  s n e  dz dz 

A .  . =  C KekrwkWk-- dQ, s 1.1  

Ai,i+ 1 = Kekrwkwk--dQ, 

B . .  = C ne-oko-loodQ, 
k = * l  s dhk ds 1 . 1  

B i , i + l =  1 ne--okoloOdQ. 
k = f l  s fie dhk ds 

In equations(l3e-h) integration is over element i. M,, and M,, can be formed from 
equations (13a-h) using (9a). M,, can likewise be formed using equation (9a) and the following 
expressions for A and B: 

B. .=  1 ne-okwooodR. 
k = f l  s R e  dhk ds I ,  I 

(13i) 

In equations (13i, j )  integration is over element i. In a similar fashion r, and r2 are formed: 

{ r l } f + A f  = ( f }r+A'  +([B]"A'(h}' + [Bl]'+A'(h'})')/A.t, 

{r2}'+A'= { f} '+Ar + ([B,]'+*'{h}' + [B3]f+Af{h'))')/At. 
( 144 

(14b) 
Here B refers to equation (6b), B, to equations(l3c,d), B, to equations(l3g, h) and B, to 
equation (1 3j). 

In this work equations (12) are solved sequentially at each time step using the Thomas 
algorithm and Newton-Raphson iterations in a scheme patterned after the block Gauss-Seidel 
iterations used by Peano et The actual solution is in incremental form to minimize 
truncation error. First the subproblem 

I N 1 1 1  {h} = (4 (15) 

is solved using the Thomas algorithm and a modified Newton-Raphson method. Hereafter 
iterations using equation (1 5) will be referred to as type A iterations. In the solution procedure the 
Jacobian is updated after each type A iteration. The converged solution is then used as the first 
estimate for the following two-step procedure: 

CM221{h")q+1 = ( r 2 J  -[M211{h}7, (16a) 

[Ml,]{h}q+' = ( r l }  -[M12]{h"}q+'. (16b) 
Here the superscripts q and q + 1 indicate the iteration level. Since M,, is diagonal, equation (16a) 
can be solved directly for h". Equation (1 6b) is solved in the same fashion as was equation ( 1  5). 
These iterations are hereafter termed type B iterations. The Jacobian for type B iterations is 
updated only on the first iteration. After each type B iteration the matrices are updated (except for 
the Jacobian) and steps (16a) and (16b) are repeated until a convergence criterion is satisfied. It 
should be noted here that other solution schemes are possible and may be more effective, 
especially when solutions are sought for problems with two or three dimensions. In their 
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examination of the hierarchic solution of linear convection-dominated flow, Wiberg and Moller32 
used several conjugate gradient methods. Other authors have noted that the use of hierarchic 
basis functions in conjunction with the multigrid algorithm may also be very efficient.27 This last 
approach will be discussed in a later section of this paper. 

COMPUTATIONAL CONCEPTS 

Three features relating to the performance of the computational scheme need to be presented. 
These are: (1) the procedure used to increase the time step in an attempt to optimize the balance 
between solution accuracy and computational effort; (2) the convergence criteria used to 
determine when the error in the solution of the non-linear problem at a given time step has been 
sufficiently reduced by the Newton-Raphson iterations; and (3) the procedure used to select 
elements where quadratic terms are to be added self-adaptively. 

In this work the time step size is controlled within the code by the number of type A iterations 
required to achieve convergence for the subproblem (1 5). If the solution requires less than four 
type A iterations at the previous time level, the time step is multiplied by 1.5 to obtain the new 
time step size. The number of type B iterations does not influence the time step size. A small time 
step was used at the start of most simulations to account for the discontinuous initial conditions. 
For all the simulations contained herein, the initial time step was 5.0 x lo-’ h. It should be noted 
that no significant difference in solution quality was observed between a solution computed using 
the ‘natural’ time step and a solution computed using a time step constrained to a reasonably 
smaller value, as long as the grid spacing was not extremely coarse. This was true for both the 
linear and self-adaptive elements. Solutions computed using coarser discretizations generally 
used larger time steps. 

The convergence criterion used for all simulations presented in this paper is 

/I hn+’ - hq l lw/ t l  h q f 1  / I c n  < e,, (17) 
where the superscript on h indicates the iteration level during a given time step. Since the 
differences are computed by the program directly, this approach is relatively efficient. For all the 
simulations in this paper a value of was used for e,. Solution quality deteriorated when 
larger values of e, were used, and computational effort increased unnecessarily when smaller 
values were employed. This criterion was used to determine convergence of both type A and B 
iterations. The code that generated the simulations presented in this paper has an option to use 
residuals as an error criterion, but this option was not employed for any of the simulations 
presented in this paper. Convergence criteria based on some estimator of local error1 7 , 1 8 , 2 1 , 3 5 . 3 7  

are also possible, but these are generally more expensive to compute and have not been used in 
this work. 

Quadratics are introduced within an element if the change in the saturation per unit length in 
the ith element exceeds the criterion eq:  

1 ~ i + l  - ~ i l / ’ A ~ < t ! , .  (18) 
Here the subscript on s indicates the node number. This criterion is determined using the 
saturations from the type A iterations. Note that the saturation can be viewed as a non-linear 
normalization of the suction head to the range 0.0-1.0. ‘Therefore e, is a criterion based upon the 
maximum permissible gradient of a non-linearly normalized variable. Other criteria are presently 
being explored in conjunction with the extension of this method to two dimensions. The selection 
of the value of eq will be discussed later since it is dependent upon the given discretization and 
type of adaptive method used for the solution of a particular problem. 
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EXAMPLE NUMERICAL SIMULATION 

The finite element model developed above was used to simulate water infiltration into a column 
of homogeneous sand. The following expressions were employed for the saturation and the 
relative permeability: 

s =  a(s, - s,)/(a + I h l b )  + s,. (20) 
Here A ,  B, a and b are empirical constants and s, and s, are the saturated and residual water levels 
in the medium. Table I contains the values of the various constants and numerical criteria as well 
as the boundary and initial conditions used for the numerical simulations presented in this paper. 

The initial simulations modelled a 50 cm sand column and saturation profiles were generated 
0.1 h after infiltration had begun (near-field problem). This allowed comparison with Philip's 
quasi-analytical solution computed by Haverkamp et aL3 Figure 1 shows the improvement in the 
resolution of the front resulting from the use of the self-adaptive hierarchic elements. Both the 
self-adaptive hierarchic solution, hereafter known as the self-adaptive solution, and the strictly 
linear element solution, hereafter known as the linear solution, were computed using 15 elements 
(Az = 4.0 cm). The self-adaptive solution was quadratic in elements 3,4 and 5 on the front. There 
is a considerable improvement in the solution at the front after the quadratic elements are 
introduced. This improvement required only three additional degrees of freedom. In order to 
validate the code, a numerical solution was computed using 100 linear elements (Az = 0.5 cm). 
For this mesh, both the self-adaptive and linear solutions closely matched the quasi-analytical 
solution. 

In order to determine the potential savings in computational effort resulting from the use of the 
self-adaptive scheme, a somewhat different problem was considered. A column 500 cm long was 
modelled with the final saturation profiles generated after an elapsed simulation time of 3.0 h (far- 
field problem). For most simulations the time step size was not changing after 1.0 simulated hour. 
The use of the far-field problem reduced the relative importance of the initial start-up period of 
the computation (application of discontinuous initial conditions) upon the total computational 

Table I. Parameters for example simulations 

n 
K 
s, 
sr 
A 
B 
a 
b 

~ ~~~ 

0.30 

0.95 
0.250 
1.175 x lo6 
4.74 
1.611 x lo6 
3.96 

34.0 cm h-' 

Boundary and initial conditions 

s, = 0.333 at t = 0 O<z<50cm (1) 
O<z<500cm (2) 

s, = 0.890 at z=  0 t > o  (192) 
s ,=0~333atz=50cm t > O  (1) 

z=500cm t > O  (2) 

( 1 )  Near-field problem. 
(2) Far-field problem. 
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0.3 ! I I 

0 1 0  2 0  30 
z (cin) 

Figure 1. Near-field comparison of self-adaptive and linear FEM; Az = 4.0 crn for both FEM solutions 

effort. This permitted a comparison of computational elkiency between different finite element 
schemes at the maximum time step allowed by the arbilrary technique used to control the time 
step size. 

As a measure of the relative accuracies of different finite element solutions, two approximate 
error norms were computed. The L ,  and the discrete L,  norms were determined using a fine 
mesh numerical approximation of the true solution (1000 linear elements, Az = 0.5 cm). A 
solution computed using this mesh size compared very well with Philip’s quasi-analytical solution 
for the near-field problem. Since the magnitude of the discrete L, norm depends on the number of 
nodes as well as the quality of the solution, it serves best as a measure of the relative qualities of 
solutions computed at a given spatial discretization. The L ,  norm is not as sensitive to the nodal 
number, although it is somewhat sensitive to the location of the nodes relative to the front. It can 
be used as a measure of relative solution quality at different spatial discretizations. It should be 
noted that for both error norms excessively coarse grids can lead to misleading numbers since the 
front may be spanned by only one or two elements. The use of continuous norms would avoid 
these problems but would require a much greater computational effort. 

Figure 2 shows a comparison of several finite element solutions of the far-field problem. The 
plain line indicates a finite element solution computed using 1000 linear finite elements. The 100- 
element self-adaptive solution had 104 degrees of freedom or three added quadratic elements. The 
coarse linear solution was computed with 250 elements (251 degrees of freedom). Table I1 lists 
both the L,  and L ,  error norms associated with each solution as well as the computational effort 
each solution required. A 500-element linear solution (501 degrees of freedom) and a 250-element 
self-adaptive solution (259 degrees of freedom or eight quadratic elements) are also included in 
Table TI to facilitate computational efficiency comparisons. These additional solutions were very 
similar to the 1000-element linear solution as indicated by the small error norms and were not 
plotted since the resolution of the plot was not adequate to show the differences between the two 
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0.9 , 1 

o,5 1 - I Coarsc Lincar FEM 
_C Sclf-adliptivc E M  

FincLincar FEM 

0.3 ! I I 

230 240 250 260  
z (cm) 

Figure 2. Far-field comparison of self-adaptive and linear FEM; Az = 2.0 cm for the coarse linear FEM; Az = 5.0 cm for 
the self-adaptive FEM 

Table 11. Far-field comparison 

Error norms 
CPU time 

Number (type) of elements L ,  L m  (4 
lo00 (linear) 
500 (linear) 
333 (linear) 
250 (linear) 
250 (self-adaptive) 
100 (self-adaptive) 
50 (selhdaptive) 

- 2184 
2.50 1.08 1044 
4.94 2.57 716 
8.42 5.10 464 
1.58 1.02 947 
4.06 3.64 316 
5.12 3.71 77 

- 

solutions. Plots examined at a higher resolution indicated that the two additional solutions 
behaved in the same fashion as did the solutions presented in Figure 2. 

Computational effort is reported in Table 11 as the number of CPU seconds required to execute 
the program. A Sun 3/160 workstation was used for all simulations. The self-adaptive finite 
element scheme using 100 elements required approximately 30% less CPU time than the 250- 
element linear solution. On the basis of the L ,  norms the self-adaptive solution was also about 
26% superior to the linear solution even though the grid spacing of the self-adaptive solution was 
much coarser and the execution time was less. An examination of Figure 2 indicates that the self- 
adaptive solution also located the front more accurately than did the linear solution. Each 
solution used the same maximum time step size of 0.0146 s so that the time step size did not affect 
the comparison between the two solutions. These same qualitative observations also apply to a 
comparison of the 500-element linear solution and the 250-element self-adaptive solution. The 
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250-element self-adaptive solution generated a solution of accuracy comparable to the 500- 
element linear solution at a CPU time saving of approximately 10%. 

Both the 1000-element linear and the two self-adaptive solutions predict the first half of the 
front identically. The error associated with the self-adaptive solutions occurs primarily at the tail 
of the front. This observed behaviour leads to the conclusion that the self-adaptive solutions are 
better predictors for the front's location than are the linear solutions, although both solutions 
may have similar maximum error norms. As the grid coarsens the linear solutions have a 
tendency to move to the right, overestimating the extent of the front's movement (Figure 3). 
Alternatively, the self-adaptive solutions exhibit increasing amounts of numerical dispersion but 
continue to predict the same location for the front (Figure 4) regardless of grid density. 

DISCUSSION 

There are two major issues to be examined in the application of a particular numerical scheme: 
accuracy and efficiency. In the previous section is wa.s demonstrated that the self-adaptive 
approach used in this work could produce solutions which closely approximated Philip's quasi- 
analytical solution. In this section some comparisons are made with other self-adaptive schemes, 
and the effects of time step size, enrichment criteria and convergence criteria on solution quality 
and efficiency are discpssed. Alternative methods to speed convergence are also explored. 

In order to make a complete assessment of computational efficiency and accuracy, other self- 
adaptive schemes were considered. The self-adaptive finite element method presented in this 
paper is currently being extended to two-dimensional saturated-unsaturated flow. Eventually, 
the two-dimensional simulator of saturated-unsaturated flow will be coupled to a multi- 
component transport simulator. Since it is not realistic to assume that the zones requiring 

0.8 

0.7 

0.6 

0.5 

0.4 

- 100 elements - 200 elements 

I 333 dements 

0.3 - = -  I 

230 

Figure 3. Far-field solution with linear elements; A z  = 5.0 cm with 100 elements; Az = 2.5 cm with 200 elements; 
Az = 1.5 cm with 333 elements 
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1 - FincLincarFEM \\ v, 

__t_ 200clcmcnts - 100clcmcncs 
-c- 50 elements 

V." , I I I 

230 2 4 0  250 2 6 0  

2 (cm) 

Figure 4. Far-field solution with self-adaptive elements; Az = 10.0 cm with 50 elements; Az = 5.0 cm with 100 elements; 
Az = 2 5  cm with 2M) elements 

refinement will coincide for the coupled flow and transport equations, the use of r-version 
enrichment would likely result in very different discretizations for each of the coupled problems. 
This would require the use of complicated interpolation operators to pass required nodal values 
between the various coupled simulators. Additionally, the implementation of a truly two- 
dimensional r-version finite element simulator is not straightforward and would likely be far more 
complicated than the use of p-version enrichment. Therefore the use of r-version adaptation was 
not considered to be appropriate for this application. 

The use of h-version adaptation was also considered. It has been noted by other authors that, 
for problems in linear fracture mechanics and elasticity, p-version enrichment required fewer 
added degrees of freedom than h-version refinement to achieve comparable accuracy.'7330 In two 
dimensions they observed that the p-version required one-fifth to one-tenth the number of degrees 
of freedom required by the h-version. This behaviour is also observed in the results presented in 
Table I1 and discussed in the previous section. For solutions of comparable accuracy, the self- 
adaptive elements were less than one-half the size of the non-self-adaptive elements. The results 
summarized in Table I1 demonstrate that degrees of freedom added hierarchically via a higher- 
order basis function are more effective at reducing error than the same number of degrees of 
freedom added by reducing the element dimensions. 

In order to compare the relative computational efficiencies of the h- and p-versions, self- 
adaptive numerical simulations were performed for the far-field problem using both methods. A 
self-adaptive h-version simulation with e,  = and an initial grid of 50 elements (Az = 10 cm) 
required approximately the same CPU time as a p-version simulation with the same parameters. 
The accuracy of the p-version was markedly superior. Discrete error norms from the h-version 
simulation were over 50% larger than the norms from the p-version simulation. The self-adaptive 
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h-version method also overpredicted the front’s position t is was noted for the non-self-adaptive 
simulations discussed earlier. One important advantage of self-adaptive methods is to permit the 
use of relatively coarse grids while generating solutions of acceptable accuracy. The numerical 
comparisons presented above suggest that for relatively coarse discretizations the self-adaptive 
p-version method is superior to the self-adaptive h-version method. 

Another self-adaptive scheme could be developed based upon the combined use of standard 
linear and quadratic (three-node) elements. The performance of the standard quadratic elements 
would most likely be similar to that of the hierarchic quadratic elements. An application of this 
sort would require the complete reformulation of the coefficient matrices for any enriched 
elements in addition to an increase in the dimensions of the stored matrix system. On the basis of 
the above considerations there is no reason to select such a scheme from the standpoint of 
computational efficiency or accuracy. The remainder of this discussion will be devoted to the p -  
version scheme previously described. 

The effect of the number of quadratic elements used at the front upon the solution quality and 
efficiency was examined. Quadratic terms were added to a particular element when the magnitude 
of As/Az for the given element exceeded an arbitrary criterion. For most of the numerical 
experiments presented herein, was used. Figure 5 shows the results of decreasing this 
criterion for the far-field problem using a discretization of 50 elements. A value of the criterion less 
than lop4 did not improve the solution and required additional computational effort. Using the 
optimized criterion of yielded an improved solution but did not affect the number of type B 
iterations required for a convergent solution. This criterion is somewhat dependent upon the 
discretization of the domain since it has been observed that for finer discretizations a slightly 
larger criterion gave optimum results. Note that the use of this criterion does not result in the 
addition of quadratic elements ahead of the front (i.e. in the direction of front movement). This is a 
consequence of the uniform initial conditions imposed upon the domain. The slight numerical 
dispersion observed at the front’s tail (see Figure 5) may be a result of the limited number of 
quadratic elements in that zone of the front. Another mesh enrichment criterion may be needed in 
order to obtain optimal results. An enrichment criterion based on the curvature of an element 
may be appropriate. Other potential criteria may be developed from various local error 

From Table11 it is apparent that the time step size was not as significant a factor in 
determining the total computational effort as was the number of degrees of freedom, N .  The 
reported computational times for the 250- and 100-element solutions of a given type are roughly 
proportional to the corresponding ratios of N for each solution. This occurred despite the large 
difference in time step size for the two different discretizations. For simulations over longer time 
periods the maximum time step size will assume greater importance when considering com- 
putational efficiency. 

Table111 presents an operation count for each approach based on N .  Note that the self- 
adaptive approach requires more operations per degree of freedom. This is due to the type B 
iterations required after introduction of the nodeless variables h‘ and to the additional operations 
required to compute the nodeless variables. In general the number of quadratic elements, N,, is 
much less than N ( N ,  is also the number of nodeless variables). Thus the additional computation 
required by the self-adaptive approach should primarily be a function of the number of iterations 
( q 2 )  required to compute the new solution for h after the nodeless variables are introduced. This 
was shown to be true by computing solutions with different numbers of quadratic elements at a 
given discretization. In practice q2 was contained in the range q 1  < q 2  < 2q1. Thus, in order to 
achieve a savings in computational effort, the number of degrees of freedom (approximately equal 
to the number of nodes) used by the self-adaptive solution must be less than one-half to one-third 

estimators. 1 7 . 1 8 . 2  1 , 3 5 , 3 7  
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Figure 5. Far-field comparison of the effect of reducing the enrichment criterion; e4 = lo-*, 3 quadratic elements; 
e, = 12 quadratic elements; eg = lo-'', 46 quadratic elements 

Table 111. Operations count per time step 

Linear FEM: 
q I  x N x 180 operations (solve for h) 

Hierarchic FEM: 

linear domain 

q1  x N x 180 operations (solve for h) 

enriched domain 

+ (az - 1) x N x 100 + N x 180 operations (solve for h) 
+ N x 2 operations (set NQj 
+ q2  x N ,  x 80 operations (solve for h") 

the number of degrees of freedom required by the linear solution. This condition was generally 
satisfied as reported in Table 11, where solutions of comparable or superior accuracy were 
generated by the self-adaptive method using elements between two and three times larger than 
corresponding solutions computed using only type A iterations. It is interesting to note that the 
self-adaptive method seems to have greater advantages at coarser discretizations. The above 
analysis suggests that additional savings in computational effort using the self-adaptive scheme 
developed in the previous section can be sought in two areas: (1) a reduction in type A iterations 
and (2) a reduction in type B iterations. 

First, a reduction in type A iterations was sought that would not result in a degradation of the 
final solution quality. From Figure 2 there appears to be substantial differences in the shape and 
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location of the fronts predicted by each type of solution. This suggests that type A iterations 
converge more slowly when equation (15) is formed using a solution from the previous time step 
which was computed by type B iterations. Since the final solution is a result of type B iterations, it 
may not be necessary to perform type A iterations to convergence. This required a modification of 
the time step adjustment procedure and made direct comparisons between the two different 
solution techniques difficult. Numerical trials indicated that more than one type A iteration was 
necessary to achieve convergence. Significant savings would not be anticipated if v 1  was limited to 
2 or 3, since the manner in which the time step was set kept yll to 4 or less and since v2  was 
generally much larger than q I .  Therefore efforts to improve the computational efficiency by 
reducing the number of type A iterations were not pursued further. 

Secondly, several approaches were investigated to reduce the number of type B iterations. The 
required type B iterations were typically twice the number of type A iterations per time step. 
Neither the solution quality nor the computational efficiency improved when the Jacobian matrix 
was evaluated more frequently during type B iterations as was done during the type A iterations. 
This behaviour was unexpected and most likely problem-specific. 

The use of relaxation to reduce type B iterations was also investigated. The variable h was 
relaxed during both type A and B iterations and the nodeless variable h” was relaxed during 
type B iterations. Relaxation was accomplished by weighting the Ah or Ah” computed during 
each iteration as shown below: 

h“’ = hq+4Ah“+’, 0 < 4 < 2 ,  (214 
h “ V + l =  h ’ q  + 4Ah”qt1, 0 < 4 < 2. (2 1 b) 

In each equation the superscript indicates the iteration level during a time step. When 
equation (21a) was used only on the first type B iteration, values of 4 greater than 1.8 reduced the 
number of type B iterations by approximately 17%. Otherwise, for this problem, relaxation as 
described above appeared to have a negligible effect upon both the solution quality and the 
computational efficiency. 

In an effort to speed convergence, different schemes to estimate h” for the first type B iteration 
in a time step were examined. These are summarized in Table IV. This series of numerical 
experiments used smooth initial conditions which allowed a uniform time step size. The most 
effective estimate resulted from the use of equation (22): 

(22) 
Here I is a measure of the front’s spatial movement over a.single time step. Equation (22) is only 
valid for movement from node i - 1 to node i. For these numerical experiments the weighting 
factor was calculated a priori. Solution quality was rrot affected by these modifications. The 
optimum value of I for this problem was found to be 0.13, which is slightly less than the value 
expected from a calculation based solely upon the movement of the front, I = 0.15, and resulted in 
a reduction in v 2  of approximately 17%. This approach is clearly restricted to single-front 

(1 - I)h:” + Ah:! 1, 0 < I Q 1. h;t+At = 

Table IV. Estimation of h” in method I hierarchic iterations 
~~ 

Estimation equation 
(on first type B iteration) Type A iterations Type B iterations 

76 
71 
64 
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problems. Note from Table IV that zero is a better estimator of h” than the value from the 
previous time step. 

In summary, numerical experiments revealed that improvements in solution quality could be 
obtained by adjusting the number of quadratic elements introduced at the front. This improve- 
ment in accuracy did not increase computational cost. Modest success was also achieved in efforts 
to reduce computational cost. This was accomplished by overrelaxing h as in equation (21a) 
during the first type B iteration and by providing a better estimate of h” with equation (22). A final 
area of investigation attempted to improve the computational cost and efficiency of the self- 
adaptive approach by reducing the number of degrees of freedom over which the type B iterations 
were performed. This work will be discussed in detail in the next section. 

SUBDOMAIN DISCUSSION 

In this section a modified iteration scheme is presented to account for the non-linearity of the 
governing equation. This approach can most appropriately be called a self-adaptive subdomain 
method, hereafter cited as method 11, and is loosely based on the self-adaptive multigrid 
algorithm proposed by Brandt.38 The subdomain iteration scheme differs from the self-adaptive 
hierarchic finite element scheme discussed in the preceding sections (method I) in that iterations 
after enrichment of the interpolating space are performed only over the subdomain of enriched 
elements. This contrasts with the conventional iteration scheme where iterations after enrichment 
are performed over a mixed interpolation space covering the global domain. This approach is 
similar in some respects to the use of telescopic mesh refinement by Ward et or to the 
adaptive local grid refinement of Schmidt and Jacobs4’ and Bramble et aL4’ In these works, 
however, h-version mesh refinement was employed. The use of hierarchic basis functions and p- 
version enrichment offers substantial advantages over h-version refinement. Zhu and Craig2’ 
discuss some of these advantages, which include easy programming and reduced computational 
time for a solution of a given quality. 

An important benefit of the self-adaptive method I is the identification of regions where the 
solution is changing rapidly. This identification is used to select elements which will be enriched 
with the quadratic terms and can serve as an a priori error indicator. This identification can be 
exploited in order to improve the computational efficiency of the self-adaptive finite element 
method presented in this paper. The elements where quadratics are to be added can be viewed as 
regions of high-frequency error and the elements which are to remain linear can be viewed as 
regions of low-frequency error. Linear elements (i.e. low-order accuracy with reduced com- 
putational expense) are used to correct for the low-frequency part of the error and quadratic 
elements (i.e. high-order accuracy with additional computational expense) are used to correct for 
the high-frequency part of the error. This analysis is similar to the reasoning behind the two-grid 
arrangement of the self-adaptive multigrid method.” Most multigrid work to date uses sequences 
of increasingly fine meshes to account for the higher-frequency error components and therefore 
presents some of the same computational difficulties inherent in h-version self-adaptive methods. 
The use of hierarchic basis functions has been examined in this context and appears to have 
similar advantages to those discussed earlier in this paper for self-adaptive p-version finite 
element analy~is.~’ In the work presented in this section the low-frequency error is corrected for 
by the type A iterations over the global domain. Selected elements are then enriched and type B 
iterations are performed only over the enriched elements, correcting for the high-frequency error. 

Although an efficient exact solver, the Thomas algorithm, is available for the one- 
dimensional unsaturated flow problem, the self-adaptive multigrid concept can be applied to the 
iteration scheme used to account for the non-linearity of this differential equation. If the 
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behaviour of the solution at a given time step is examined, it becomes evident that the low- 
frequency error is controlled by the type A iterations at the beginning of the time step. The 
subsequent type B iterations, performed after adding quadratic terms to the appropriate 
elements, function mainly to reduce the high-frequency error at or near the front. The solution 
elsewhere in the domain is not changed during type B iterations. By performing type B iterations 
over a reduced domain, a substantial saving in computational effort is possible. For most 
problems the reduction in the number of degrees of freedom over which the type B iterations will 
be computed will be large ( N  - N Q  - 1, where N 9 N Q ) .  

In the self-adaptive subdomain method the same criterion used for enrichment of the interp- 
olating space in the preceding simulations (As/Az) is used to define the subdomain where the 
high-frequency error is potentially significan't. Numerical experiments revealed that this criterion 
had to be less than or equal to when using 100 elements for the far-field problem in order to 
introduce enough quadratic elements to avoid oscillations near the subdomain boundaries. 
Another potential criterion would be the magnitude of the change in s during the last type A 
iteration. This criterion must be normalized with the time step in order to avoid osciliations in the 
location of the subdomain boundaries whenever the tirne step size increased. In the presented 
simulations the criterion based upon the change in s over an element, equation (18), is used to 
determine the subdomain. 

A subdomain consists entirely of quadratic elements and is decoupled from the global domain 
by the insertion of first type boundary conditions at each end of the subdomain. The solution 
obtained using type A iterations provides the values used as boundary conditions. Type B 
iterations are then performed over the smaller quadratic subdomain until the convergence 
criterion is satisfied. The solution obtained from type B iterations then replaces the previous 
solution obtained using type A iterations at the common nodes. 

A significant improvement in computational efficiency results from the use of method 11. The 
far-field problem was solved using a discretization of 100 elements. Figure 6 compares solutions 
computed using 1000 and 100 linear elements with solutions computed using 100 self-adaptive 
elements using methods I and 11. Table V summarizes the relative computational efforts required 
by each scheme. Comparing the method I solution computed using a criterion on As/Az of lo-* 
and the method I1 solution computed using a criterion on As/Az of method I1 required one 
more type B iteration per time step than did method I .  Method TI would not converge when using 
a value of eq > on As/Az 
required the same number of type B iterations as did the method IT solution. However, since the 
type B iterations performed by method 11 were over a substantially fewer number of degrees of 
freedom than the type B iterations performed by method I, a significant saving in computational 
effort resulted from the use of method I1 as compared to either method I solution. Method I1 
produced a solution of superior quality to that produced by method I (approximately 40% 
measured by each norm) in 50.3% less CPU time. A method I1 solution with 100 elements is 
slightly superior in the L ,  norm (approximately 15%) than the non-self-adaptive solution with 
333 elements (Az = 1.5 cm), with over a fourfold reduction in required CPU time. These results 
are also summarized in Table V. Note in Figure 6 that the dispersion observed previously at the 
tail of the front (Figure 4) is reduced by the use of method 11. 

The number of type B iterations required by the method I1 solution increases with the size of 
the enriched subdomain (Table V). This is expected since the larger subdomains incorporate areas 
where the high-frequency error is increasingly less significant. The computation time is relatively 
insensitive to small changes in the size of the subdomains since the contribution of the type B 
iterations to the total computation time is small. The same is not true for the error norms, which 
are much more sensitive to the size of the subdomain. This may be a result of greater efficiency of 

A method I solution computed using the same criterion of 
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Figure 6 .  Far-field comparison of method I, eq = and method 11, eq = 

Table V. Comparison of method I and method I1 self-adaptive hierarchic schemes for the far-field problem 

Errors norms Iterations Number of degrees 
CPU time of freedom in 

Element type L2 L m  Type A Type B (4 enriched domain 

(Az = 5.0 cm) 

Linear 19.09 14.90 887 133 - 

Method I 4.06 3.64 885 1580 313 104 (eq = lo-’) 
5.83 5.18 885 1729 333 113 (eq = 

Method I1 2.80 2.18 893 1732 155 25 (eq = 
5.83 5.18 893 1884 171 43 (eq= 

- 

( A z  = 1 3  cm) 

Linear 4.94 2.57 1378 686 - - 

the type B iterations when the high-frequency error is more evenly distributed over the sub- 
domain. In general the use of method I1 produced greatly superior results at a given discretiz- 
ation, both in terms of solution accuracy and in required computation time, in comparison with 
method I or the non-self-adaptive finite element approach. 
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CONCLUSIONS 

The principal intent of this research was to investigate the use and refinement of the self-adaptive 
hierarchic finite element method for the solution of the non-linear unsaturated flow equation. The 
selection of this particular self-adaptive approach was based upon considerations relating to the 
intended application of the developed method and results of numerical simulations which 
indicated that hierarchic enrichment of the interpolation space yielded advantages in efficiency 
and accuracy over other self-adaptive approaches. The self-adaptive hierarchic method used was 
shown to be more accurate at a given discretization than the non-self-adaptive linear finite 
element method used as a basis for comparison. In addition, the original self-adaptive 
finite element method investigated was shown to be more efficient than the non-self-adaptive 
finite element method in computing solutions of Comparable accuracy. Not only did the 
self-adaptive method require less CPU time, but substantially fewer degrees of freedom were 
required, reducing demands upon computer memory. ‘The saving appeared to become more 
significant as the grid spacing coarsened. 

A modification of the original self-adaptive approach was then investigated. The self-adaptive 
subdomain method can be described as an application of a self-adaptive hierarchic two-grid 
iteration scheme to account for the non-linearity of the governing equation. This method yielded 
significant reductions in the computational time required to generate a solution of a given 
accuracy, nearly 50% when compared to the original self-adaptive method. When compared to a 
non-self-adaptive finite element solution of comparable accuracy, the use of method I1 resulted in 
over a fourfold reduction in required CPU time. In addition, improvements in the solution 
accuracy were observed at a given discretization when compared to the original self-adaptive 
approach. 

This work has demonstrated the utility of the self-adaptive hierarchic finite element method for 
the solution of the non-linear unsaturated flow equation. In particular, the application of the self- 
adaptive subdomain method shows great promise. Several issues are currently being investigated: 
(1) the use of higher-order elements ( p  > 2); (2) application to problems of higher dimension; and 
(3) the development and use of local error estimators, both as convergence and enrichment 
criteria. The extension of the self-adaptive hierarchic finite element method to problems of higher 
dimension shows particular promise. While the matrix structure is not as elegant in higher 
dimensions (M2* may not be diagonal, depending upon the choice of basis functions), the ease of 
transferring nodal variables and related coefficients still leads to potential computational advan- 
tages. The nodal connectivity does not change when the interpolation space is enriched hier- 
archically. The application of slice-successive-overrelaxation methods to extend a 2D code to 3D 
would be straightforward since each slice could be adapted independently of the other slices 
without losing correspondence at the nodes. The ability of the presented method to generate 
acceptable solutions on coarse grids suggests that the use of higher-order basis functions may be 
well suited to the solution of two- and three-dimensional problems on the coarse meshes required 
to simulate large-field-scale problems. 
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